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Table 7
Academic Year 1982
Corre.ations Among Performance Measures from the Three Models
Models
Conventional Handicap RRT
(Observed) (Adjusted) (Adjusted)
Handicap .89 1.00 .93
RRT 87 .93 1.00

N = 163; for all rs p<.001.
Model Choiceand Pass/Fail Frequencies

It might be tempting to conclude that since the models produce moderately
highly (.87 < r < .93 ) correlated measures with about the same means, one is
as a good as another. But the three models produce different outcomes for
specific individuals and the best decisions will be obtained with the RRT mcdel.
Table 8 illustrates the impact of model choice on pass/fail outcomes for the
Medicine clerkship students in the 1982 academic year if the minimum passing
score had been defined as a rating of 50% éi.e., labeled on the rating inventorv:
"adequate performance without significant deficits”). (This passing cut-off was
chosen simply for illustrative purpeses. We have no information on whether it is
higher, the same, or lower than that actually used. Minor changes in the cut point
can, depending on the distribution of scores, produce dramatic differences in the
results.) Not only are the total number who falil different depending on the model
used: Conventional (8), Handicap (4), RRT (7), but exactly who fails and who
passes varies depending on the model. Since the RRT model provides the best
measure of performance, the lower right hand cell of Table 8 shows that the

- secnnd best measure (Handicap-adjusted) would have led to probably unjustified

passes for three students. The Conventional model would pass 3 who probably
should have been failed, and fail 4 who probably should have passed (upper right
hand cell of Table 8).

Table 8
Academic Year 1982
Transitions in Pass/Fail

Decision Based on

Decision Based on Handicap Model RRT Model
Coiwentional Model
Pass Falil Pass  Fail
Pass _ 160 1 169 3
Fail -7 5 3 4 4
Handicap Model
Pass 189 3
Fail 0 4
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Abstract

Observed performance ratings are often as much a measure of rater
stringency as subject ability. Although activities can be designed to raise the
consistency with which raters apply performance rating criteria, practical
constraints frequently preclude their use or reduce their effectiveness. Described
are 3 models of rating-based performance measurement: Conventional,
Handicap, and deterministic Rater Response Theory (RRT). The first offers
passive control, the others active control of stringency error. General model
requirements, power, bias of measures, computing cost and complexity are
contrasted. Some contrasts are illustrated by application of the models to a small
and a large set of clinical ("ward") performance ratings of Junior Year US medical
students in an Internal Medicine clerkship: 1 and all rotations in an academic year.
Both 1- and 2-factor performance domains are considered. Removing stringency
error lowered the correlation between domain scores. RRT is the most powerful
of the 3 models contrasted. Handicap is a close second, although biased. Under
frequently found conditions, RRT obtains any specified inter-rater reliability with
only one-third the independent ratings needed by the Conventional model {i.e.,
mean of observed). Pass/Fail decision outcomes for each model’s measure of
performance are illustrated for the 163 students in the academic year analyzed
and a hypothetical student: Will E. Makit. Willie’s fate reflects his true ability, the
measurement model, passing score, and stringency and number of his raters.
Choice of measurement procedures should reflect a reasoned and reasonable

balance in costs of improving the accuracy or the measures and costs of faulty
decisions based on those measures.
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Rater Stringency Error in Performance Rating:
A Contrast of Three Models
Gerald J Cason and Carolyn L Cason

University of Arkansas for Medical Sciences
Little Rock, Arkansas 72205

Quantitative ratings based on the judged guality of performance of students,
residents, interns, certification candidates, and practicing professionals observed
in actual or simulated practice settings provide one of the most common methods
for the measurement of ability and competence in the ﬁrofessions. More often
than not, there are practically important differences in the stringency with which
different raters apply the performance criteria (Cason, Cason & Redland, 1988;
Cason, Cason & Stritter, 1986; Cason & Cason, 1984; Delk, Cason, & Reese,
1985; Littlefield, Ellis, Cohen, & Herbert, 1984; O’'Donohue & Wergin, 1978). If
who rates whom varies from subject to subject (e.g., student to student),
differences in rater stringency can cause significant errors in the measurement of
subject ability. There are two things which reduce differences in rater stringency:
recent participation in the formal development of a rating inventory (e.g.,
Stiggins,1987) which the developers then use as raters (e.g., the behaviorally
anchored scales in Cason, Cason, Bond, & Jackson, 1989) or intensive training in
the consistent (within and across raters) use of an extant rating inventory
(Stilman,1980). Cost, scheduling conflicts, and other practical constraints usually
preclude effective use of either of these approaches to standardizing raters’
stringency before ratings are collected. e same constraints also tend to
preclude having all subjects rated by the same rater(s). However, since
stringency errors are systematic (rather than random), they are amenable to post-
hoc mathematical remedies.

This paper is addressed to the use of three remedies for errors in the
measurement of ability which arise from differences in rater stringency. The
emphasis is upon the contrast between conventional practice and two after-the-
fact remedies; that is, models which provide stringency off-setting adjustments to
ratings after the ratings have been collected. Since differences in stringency give
rise to measurement errors only when raters vary from subject to subject, this
very common problematic circumstance is assumed in the following discussion.
Although the illustrations in this paper are drawn from medical education, the
remedies themselves are broadly applicable. The intent of this paper is pragmatic
rather than theoretical: to assist those who use performance ratings in
educational, licensing, or certification decisions to make higher quality (i.e., more
valid and reliable) decisions. Thus, the examples in this paper are intended only
to illustratz and clarify, not prove, the points presented in the discussion.

"Models for Interpreting Clinical Ratings

In the following discussion, for convenience the person doing the rating is
called the rater and the person whose performance is rated is called the subject.
It is assumed that for each subject evaluated by a rater a numeric rating is
assignied to each of the one or more criteria on: a written in entory of performance
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criteria. In spite of evidence to the contrary (C. Cason, Cason & Littlefield, 1983;
Dielman, Hull, & Davis, 1980; Keck, Arnold, Willoughby, & Calkins, 1979; Maxim &
Dielman, 1987; ), to simplify the initial discussion, a single factor is assumed to
underlie performance ratings. Thus, an average ecross ratings on individual
criteria is a good measure of a rater's evaluation of a subject’s over-all
performance. This single value for a rater-subject pair is the rating to which the
following discussion refers. (Later in the discussion the issue of multiple factors
will be considered.) The basic psychometric assumptions are made: (a) the
observed rating (x) is composed of both a true score (t) component and a
random error (e4) component; and, (b) random errors are normally distributed
and uncorrelated with true scores. In addition, there may be (and frequently is) a
systematic_error component (ep) arising from differences in rater stringency
(Wherry, 1952). Thus,

Xx=t+eq+es (1).
Conventional Practice Modet

In conventional practice, a subject’s score is defined as the average (mean) of
ratings received from those (one or more) who rated this subject. While the
model implicit in this practice makes no special provision for systematic rater error
(e0), the cumulative effect of this error is diminished to the extent that the
systematic errors of the raters of one subject become more nearly equal to those
for other subjects. That is, rater error is equal to an additive constant for each
rater. To the extent that the sum (or average) of the constants for the raters of
one subject approaches equality with the sums {or avera:jges) for other subjects,
the differential effect of e approaches zero. In other words, as the raters of each
subject become more representative (in terms of systematic rater errors) of all the
raters in the pool, the net differential effect from subject to subject of such
systematic errors tends to "balance out' and aﬁproach zero. This kind of
representativeness of raters is more likely to be achieved by random assignment
of raters to subjects and using large numbers of raters per subject. Random
assignment and large numbers of raters per subject tend to reduce the net
contribution of both random and systematic error to a subject's observed mean
rating. However, as is implied by the formula for the standard error of a mean
(see Appendix A, Formula 1), the sampling error of the mean rater error is likely to
be large for an individual subject unless the number of raters per subject is large.
This means the errors are unlikely to balance out very well when the number of
independent raters per subject is small. Also, it must be remembered that even
where the number of raters is large, random assignment only tends to produce
these balancing effects over-all, not guarantee them in each subject’s case.
Nevertheless, the over-all balancing out of errors as the number of raters per
subject increases is clearly shown by ths increasing reliability of the mean of these
ratings as estimated by the Spearman-Brown expansion formula (see Appendix,
Formula 2).

Spearman-Brown’s formula is applicable whether random assignment is used
or not. However, if random assignment is not used, systematic rater errors will
not tend to be balanced. This will be reflected in a lower estimate of the reliability
of a single independent rater and consequent lower total gain in reliability from the
multiple independent ratings.

In so far as a justification is possible, this relationship expressed by the
Spearman-Brown formula justifies the conventional and wide-spread practice of
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ignoring systematic differences in raters’ stringency on the grounds that in the
long run such differences balance out. If the measure involved is something like a
cumulative grade point average, in a prograni with a fixed curriculum (i.e., no
electives, or nearly none), as is the case in many educational programs for the
professions, the logic appears reasonably sound for decisicns such as choosing
the valedictorian. However, this passive approach leaves what to many is an
unnecessarily large role to luck or chance. Since the difference in the fop few
students’ GPAs is likely to be well within the standard error of the GPA, one could
reasonably wonder if the final ranking of these top students did not as much
reflect slightly different luck in the draw of raters as in true ability. Furthermore, in
the professions performance in a single course, or very small set of courses, or a
single practical exam, may be the basis for major decisions affecting an
individual’s career: licensure, admission to advanced or specialty training.
certification, etc. Here the run is nct long enough to have confidence that a
passive approach will provide a balanced measure of the subject's ability. It is
this question which motivates the use of active remedies for differences in rater
stringency provided by the next two models.

Rater Handicap Model

The rater handicap model (Delk, et al., 1985; Littlefield, et al., 1984; Wherry,
1952) is based on the attractively simple notion that if subjects are randomly
assignad to raters, and raters each rate a sufficiently large number of subjects,
then differences in the mean ratings given by each rater reflect primarily
differences in rater striné;ency rather than differences in the subjects’ ability. That
is, if assignment is random, and the group assigned to each rater is large, then
the mean true ability of subjects in each group should be very little different from
the mean in any other group or from the grand mean (i.e., the mean of group
means). The formula for the standard error of the mean (Formula 1 in Appendix
A), with N the number of subjects per rater, suggests the size of variations in
means that wouid reasonably be attributed to sampling fluctuations. A pair of
means more than 2 standard errors apart is unlikely to be solely due to chance
(p<.05). The handicap model attempts to off-set or correct for systematic
differences in rater stringency by computation of a handicap for each rater which
is then applied to each rating given by that rater. A rater’s handicap is defined:

Hi = Mg - Mi: (“"':

where:
H; = rater i’s handicap,
Nf = grand mean of all raters’ means, and
M;’= mean of rater i’s ratings.

The entire difference between the rater's mean and the grand mean is
assigned to the rater’s stringency even though some part of this may actually
reflect random sampling error in the mean true ability of a rater’s group of
subjects. How good an estimate of the rater’s true stringency this may be is a
function, in part, of the.sampling error of the mean. As mentioned above, the
formula for computing a standard error of the mean indicates that small numbers
of subjects per rater (e.g., N /r<5) are uniikely to give useful estimates of rater
stringency. Furthermore, in onily one special case will the handicaps be unbiased
least-squares estimators of the raters’ stringencies: when the group of subjects
rated by each rater is entirely different from that rated by any other rater. That s,
no subject is rated by more than one rater. (This is an especially important case

<
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because it is one in which the next model cannot be applied.) In all other cases,
the handicaps are only. biased approximations or least-squares estimates of
stringencies, with the approximetion in general improving with increased Ng/r-
(The handicap model may be understood as an approximation of a regresmén
model containing "dummy vectors" for each rater and subject. The handicap-
adglsted mean is an approximation of the regression predicted (y’) mean for a
subject rated by all the ratei's. The regression equation permits this prediction
even though no subject was in fact rated by all raters.)

A subject’s handicap-adjusted score is computed by adding each of his or her
raters’ handicaps to their respective ratings, then finding the average of these.
Equivalently, a subject’s mean observed rating may be adjusted by adding the
mean of his or her raters’ handicaps. How much better a measure of the
subject’s ability the handicap-adjusted score is than the mean of the observed
retings depends directly on how good the handicaps are as estimates of he
raters’ stringencies. . '

The great strength of the handicap model is its conceptual and computational
simplicity. It can be applied with only modest effort to small data sets with no
more computing support than a pocket calculator, and to large data sets with only
a spread-sheet program and a micro-computer $Delk, et al., 1985; Mills, 1988;
Quattlebaum & Sperry, 1988). One of the costs of this simplicity is that the model
provides ne intrinsic mechanism for estimating (a) how well the handicap model
fits the observed data, (b) the proportion of variance in the observed ratings that
the model attributes respectively to rater stringency and subject ability and thus
(c) no direct way to estimate the reliability of the adjusted ratings.

For the purposes of this paper, over-all fit (R) and the variance components
were estimated using regression analysis. The criterion variabie was the observed
rating, the predictor variables were rater handicaps and Eubject handicap-
adjusted mean scores. This approach produces an over-all R that slightly over-
estimates the model’s fit to the data. The distortion appears to be slight. Also, as
this is the approach used in the next mode! it permits more directly comparable
results. The stringency (rater effect) and ability (subject effect) components of
variance are given by the product of each variable’s correlation with the criterion
and the variable’s beta weight in the regression equation (see Appendix A,
Formula 3).

The variance due to subject avility is equal to the intra-class, inter-rater
correlation or the reliability of the observed rating of one rater (Ebel, 1951; Hays,
1963). That is, it is the ratio of the variance due to ability versus ability CFlus rater
and random error. Because the variance due to error in the observed includes
both the over-all residual error from the regression analysis (1 - R€) and variance
due to raters, the estimate of inter-rater correlation (single rater reliability) for
handicap-adjusted scores must be higher than that for observed ratings if any
variance is attributed to the rater stringency effect. Adjusted ratings have had the
effect of rater error removed from them, therefore it is not included in the
denominator of the formula. This estimate of reliability for the adjusted scores is,
at best, an upper-bound limit for the Handicap model. It is probably an over
estimate because it is dependent on the accuracy of the estimated variance
associated with raters and the handicap model is more likely to over- than under-
estimate this variance. In cases where subjects are rated by multiple independent
raters, the Spearman-Brown formula is used to estimate the reliability of the
observed means across raters and handicap-adjusted means for subjects.

6
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Deterministic One-Parameter Rater Response Theory (RRT)

Our rater response theory ( Cason & Cason, 1984; 1985; 1988) was initially
developed in response to the need for a method to off-set systematic rater errors
in the assessment of students’ clinical performance in health professions
educational programs. A method was needed that avoided the rater
handicapping model's requirements for random assignment of subjects and
relatively large numbers of subjects per rater because often in practice one or the
other could not be satisfied. At the level of latent-trait meta-theory, our RRT
shares some fundamental notions with and is a conceptual (although not formal
mathematical) derivative of the discrete-state, probabilistic item response theories
(IRTs) of Lord and Novick (1968) and the so-called Rasch model (Linacre,1939;
Rasch,1966; Wright & Stone, 1979). Our RRT is a deterministic rather than
probabilistic theory. Our RRT assumes continuous, interval-level rating data and
requires the far less complex mathematics of fairly elementary algebra.

Although in the general formulation of our RRT (Cason & Cason, 1984)
provision is made for several rater characteristics, here we will be concerned only
with our simplified, one-parameter model which we have used in all of our applied
work to date. (The expression "one-parameter" follows IRT convention of
descriking the model in terms of how many parameters are used to represent the
measuring device: the item in IRT and the rater in RRT.) The single rater
parameter is stringency. In this simplified RRT model illustrated in Figure 1, the
observed rating (x) is a curvilinear function of the subject’s true ability (t,, iect)
the rater’s true stringency (t,a4o,) @nd random error (e). All systematic vana?njon In
observed ratings is a function of the shape of the Rater Characteristic Curve
(RCC) and the difference between the rater’s stringency and the subject’s ability.
The two "s-shaped" (ogival) curves in Figure 1, are Rater Characteristic Curves for
raters A and B. The rater’s stiingency (t a1e) is @qual to the value of the point on
the true ability and stringency (t) scale gﬂ'ectly below the point on the RCC
associated with a rating half way between the rater’s effective rating floor and
ceiling. In Figure 1, for rater A, t1or = K; for rater B, t 540, = L. In the simplified
RRT, this is the point associated w& arating of 50% (of e possible points on the
rating inventory?; that is, where the rater’s stringency equals the subject’s ability
(trater. = EH‘PjeCt) the expected rating is 50%. As implied by Figure 1, the
simplified assumes RCCs of all raters have equivalent shapes, i.e., equal
slopes and effective floors and ceilings (i.e., 0% and 100%, respectively). Figure 1
also shows that for a subject with ability equal to s (tg, iect = S) the less stringent
rater A is expected to give a higher rating (RA) than H*e more stringent rater B,
who is expected to give the lower rating (RB). More generally, for a fixed ability,
the expected rating ~eclines as rater stringency rises. For fixed rater stringency,
the expected rating. .s as ability rises. .

For the RRT to be of practical use, a specific mathematical function must be
chosen to stipulatively define the RCC. We arbitrarily chose the cumulative normal
ogive to define the deterministic function in our RRT. In the context of our model
the normal ogive is .simply a function defining an s-shaped curve, it is not a
probability distribution function. (Exploratory work with other ogival functions,
such as a rescaled, translated, inverse-cotangent function, have not given quite
as good fit with the empirical data.)

7
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Figure 1. Rater Characteristic Curves for Raters Kand L.

d. Expéqssing the observed ratings (x) as proportions, the RRT model is formally
efined-:

X= {z[(subject - trater) /2l} +&.  (3)

where:
z = unit-normal (curnulative function) deviates,
and
a = 100; an arbitrary scaling factor.

Unlike common practice in IRT which results in the use of small and negative
values to represent subject abilities and item difficulties, we introduce a large,
positive constant scaling factor (a) and chcose the t-scale origin (by arbitrarily
defining some rater’s {54, = 500) to cbtain values for ability (tgpiect) @nd
stringency (traer) that are ?arge positive numbers. Since, Formula 3'expresses a
curviiinear relgglonship, illustrated in Figure 1, it does not lend itself to the more
efficient, economical numeric analysis procedures available on computers, e.g.,
linear regression, for the estimation of the model's parameter values (i.e., true
abilities angd stringencies) from actual observed data. However, the inverse unit-
normal (') function may be applied to the observed ratings if they are expressed
as proportions:

Tin earlier work the symbol RRP was used for trater and SAP for tg;pyiect-

§
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y =z1(x). @)

By the transformation of x to y, Forinula 3 may be converted into a form amenable
to linear regression analysis:

Y = [(subject” trater) /@1 +e.  (5)

The details of paramster estimatiori are given elsewhere (Cason, Cason &
Redland, 1988a, 1988b; Cason & Cason, 1985) and are beyond the scope of this
discussion. Suffice it to say that the process involves tpe application of linear
regression analysis to a criterion (y) variabie defined by z™'-transformed observed
ratings and predictors defined by binary coded "dummy" variables for each rater
and subject. The model parameters are found by a linear transformation of the
raw regression weights associated with raters and subjects. As discussed above,
results of the regression analysis and the appropriate formula (in Appendix A)
provide estimates of over-all fit (R), components of variance, reliabilities, and
standerd errors. (The details of the application of these formula to RRT analysis
are given in CL Cason, et al., 1988a.)

No use of the means or other distributional characteristics of observed scores,
stringencies, or abilities was made in either the definitions or derivations of the
defining Formula (3, 5) of the RRT. Unlike the Rater Handicap model, random
assignment of subjects to raters is not required to obtain good estimates of the
RRT's parameters. (The only distributional assumptior: in the RRT, is that random
errors are normally distributed on the t-scale. This implies, given the curvilinear
relationship of the t-scale to observed ratings, that errors are not normally
distributed on the observed rating scale.) Although, random assignment is not
required by the RRT, it has another special requirement.

Disregarding scaling constants, RRT basically asserts observed ratings reflect
distances between raters and subjects on the t-scale. If a solution for abilities and
stringencies is to be obtained without any use of rater or subject means, the data
must be "coupled" in a particular manner. The data must provide information
sufficient to finc the distance from any rater to any subject. That is, there must be
a path that leads from any subject to any other subject or rater; and conversely
from any rater to any other rater or subject. This condition is not as hard to satisfy
as it may at first appear. All the subjects rated by rater A are coupled to A, that is
observed data is available about their distances from A. If one of these, subject J,
is also rated by rater B, then rater B and all the subjects rated by rater B are
coupled to rater A through subject J. If there are over-laps in the subjects of
different raters, this additional information is used to find unbiased estimates of
the true distances. Regression analysis is one procedure which does this.

It should be intuitively apparent that even if the subject by rater table (matrix)
has many empty cells (i.e., each rater rates only a few subjects and each subject
is rated by only a few raters), the coupling requirement can nevertheless easily be
more than minimally..satisfied. As the number of alternate (overlapping,
redundant) pathways for which observed data provides distance information
increases, the accuracy of stringency and ability estimates improves. In addition
to satisfying the coupling requirement, as a minimum the data should provide at
least two ratings per subject and two ratings per rater. Figure 2 provides a
schematic iliustration of a rating data matrix that satisfies both of these RRT
requirements.
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Rater
1 2 3 4 5
Subject

1 X X
2 X X
3 X X
4 X X
5 X X

Figure 2. Example of Coupled Data.

RRT-adjusted Rating

In so far as the analysis of the observed ratings using the RRT is successful,
the estimates of subject ability expressed or: the t-scale (tgpigct) are free from
the effects of rater stringency. It could be used as the measure of the subject
performance. However, unlike the application of IRT to examination data, in
performance rating there is a presumptively appropriate scale printed on the
original performance rating inventory. For many purposes, it is best to express
the results of the RRT analysis on this origina! scale rather than on the t-scale
which is likely to be unfamiliar to and therefore difficult for the users of the resuilts
(e.g., faculty, licensing authorities, etc.). The exact way in which this is done has
major evaluative (standard setting) implications. Once the true abilities of subjects
and true stringencies of raters are estimated, the expected rating (x’) of a subject
rated by any of the raters may be calculated as:

X = Z[(subject - trater) /2]1- (6

What rater or group of raters, and if a group whether unequal weights should be
applied to the separate estimates in computation of the final RRT-adjusted score
is a policy issue. For example, raters with more experience might be given
greater weight, or the stringency of the head of a department alone might be
adopted as the consistent standard of stringency. In the following examples, the
average of a subject’s expected ratirgs from all raters, i.e., the estimate of the
mean rating the subject would have received if rated by all the raters, is used as
the RRT-adjusted rating.

RRT Rater Handicap

In a similar manner, a rater’s stringency is represented by a value on the t-
scale. However, the t-scale is not linearly related to the observed rating scale;
therefore, the t-scale values of stringencies are not directly comparable to the
handicaps for raters used in the Handicap model. For purposes of comparisons
between the two models an analog of a rater handicap is computed from the RRT
results as follows. Using a rater’s t-scale stringency, and each subject’s t-scale
ability, the rater’s expected mean had he rated all subjects is found. These RRT-
expected rater means_are then used in place of observed means to obtain RRT
rater handicaps as described in Formula 2.
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Characteristics of Data Required by Each Model

Table 1 is intended to aid practical decisions about which model may be used
under various constraints. It provides a summary of the data characteristics
required by each of the models (Conventional, Handicap, and RRT), if it is to be
used for the control of systematic rater stringency error. All the models do a
better job with more data. The minimum number of subjects per rater for the
Handicap model given in the table represents our best judgement, based on
fragmentary, suggestive evidence. Of the three models, in general, RRT makes
the most efficient use of information in performance ratings; the Conventional
model makes the least efficient use of the information. If the RRT analysis is
applied to data that satisfy the Handicap requirements and only satisfy the
coupling requirement within subsets of the data, the results have a mixture of the
properties of both models.

Table 1
Comparison of Model Requirements and Characteristics
Models
Conventional  Handicap RRT
A. To Off-set any Rater Error
Random assignment Yes Yes No
Data "coupling” No No Yes
Min raters/subject 2 1 2
Min subjects/rater 1 5 2
B. Efficiency/Power Low High Highest
C. Quality of Measures
Unbiased Yes Nog_ Yes
Least-squares Yes No Yes
D. Computing
Cost Trivial Very Low Low
Complexity Means Deviates Regression
E. Overall Quality Lowest 2nd best Highest
Method

The following illustrative examPIes are based primarily upon the application of
the three models to.two sets of data, both obtained from University of Texas
Health Science Center-San Antonio, Texas. Both data sets meet both the 1a."4om

2The handicap model produces least squares, unbiased measures of
performance only in the special case where each subject is rated by one and only
one rater.

11
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assignment requirement of the handicap model and the coupling requirement of
the RRT model. The smaller set is from a single cohort of students; the larger is
drawn from the entire academic year. The data all come from the College of
Medicine’s Junior year clerkship {clinically oriented course) in Medicine for the
year 1982. In addition, the data for one student, somewhat whimsically denoted
“Will E. Makit" or simply “Willie", who went through the same course more recently
" (1989), was interpolated into the results to provide the concrete, specific
examplss. These examples were included to provide a common point of
reference between the simulated "grading committee meeting" exercise and the
presentations of the contributors to the AERA symposium (Session number
23.16) in which this paper was first presented. The data analysis results eported
for the single cohort and whole academic year did not include Willie’s data. His
data were used only in the illustrations specifically referring to him.

Rating Inventory

Students were rated usiig an inventory containing 5 criteria. Each criterion
was on a0 to 14 scale. The first 4 criteria were determined by the authors, on the
basis of connotative content, to be measures of cognitive and technical skills. The
fifth item was the only one in the inventory that appeared to measure affective,
inter-personal and communication skills. The drta have been used in a number
of previous studies (s.g., C. Cason, Cason, & wttlefield, 1983; Cason & Cason,
1985; G. Cason, Cason, & Littlefield, 1983; Littlefield, Harrington, Anthracite, &
Garman, 1985).

Dependent Measure

Two kinds of assumptions were made leading to three different definitions for
the dependent measure. Assuming that the ratings of clinical performance
represented a single general clinical competence facto:, a student's observed
rating from a rater was defined as the mean of the ratings assigned by this rater to
the 5 items on the inventory. Assuming that there were two factors represented
by the criteria, the average of the first 4 defined the observed rating for Cognitive-
Technical (CT) skill and the score on the fifth defined the observed rating on
Affective-Interpersonal (Al) skill.

Raters

The students’ clinical performance was rated by Faculty attending physicians
and senior residents.

Data

Set 1 consisted of the ratings of students in the first cohort to rotate through
the Medicine Clerkship in 1982 (Cohort 1982a). Total number of ratings
(invantories completed) was 129. Number of raters was 42. Number of students
was 24. Thus, there were 3.07 ratings per rater; 5.38 ratings per subject

Set 2 consisted of all ratings for all students during 1982 (Cohorts a through g
combined) excluding those ratings that came from raters who rated less than 5
students during the year. This exclusion did not remove any student from the
analysis. It did remove 94 raters who together had given 219 ratings (completed
219 inventories). After exclusion of data from raters with fewer than 5 subjects,
there wiere 744 ratings, by 93 raters, on 163 students. Thus, there were 8 ratings

12
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per rater; 4.56 ratings per student. These data met the minimum requirements of
all the models, that is, the Conventional, Handicap and RRT models.

; Results
Assuming Uni-dimensionality of Clinical Ratings
Application of the Models to a Smali Data Set

Table 2 Frovides descriptive statistics on the performance measure provided
by each of the three models across the 24 students in the cohort. For the
Conventional madel, the measure is each student’s observed mean (across
raters); for the other models, it is their respective adjusted scores. All models give
very nearly the same mean across students. However as reflected in the standard
deviations (SDs) and ranges (minimum - maximum), the Handicap model has a
somewhat lower variability than the Conventional model and the RRT model has a
much larger variability than either of ‘he others. The lower variability of the
Handicap model arises from assuming all the difference between the raters’
grand-mean and individual rater means is due to differences in raters. To the
degree this is not so, too much is subtracted from the observed scores in the
computation of handicap-adjusted scores forcing them all closer to the grand
mean than is truly justified. The higher variability of the RRT model directly reflects
RRT’s implicit assumption that a rater tends to systematically under-estimate the
ability of very bright students (by that rater’s standard of stringency) and over-
estimate the ability of very dull students. Thus, generally RRT will give measures
of performance having greater across students variability than the observed
scores or handicap-adjusted scores. Under random assignment as number of

subjects per rater rises, these values are expected to gradually converge.

Table 2
Cohort 1982A
Descriptive Statistics on Parformance Measures from the Three Models
Models
Conventional Handicap RRT
(Observed) (Adjusted) (Adjusted)
Mean 63.99 63.69 _ 64.12
Minimum-Ma<imum 45.14-77.14  44.77-72.80 42.45-85.36
Standard Deviatior 717 5.89 13.29

Nraterz = 42 Nsubjects = 24 Nratings = 129

Table 3 summarizes the fit of the three models to the 1982a cohort. For the
Handicap and RRT models it also shows the estimated proportions of variance
due to raters’ stringency and subjects’ ability. The Conventional model makes no
provision for separate.contributions from systematic rater effects and subject
ability: thus, no estimates of their separate contributions is applicable to this
model. Since for these data, the rater stringency effect is statistically significant
(F = 2.36; df = 23, 65; p< .0001) in both the Handicap and RRT models, the
Conventional model cannot account for the observed data as well as either of the
others. The Handicap model attributes considerably less of the variance in the
observed ratings to ehility than does the RRT model; and, a little more to
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stringency than does the RRT model. The components of variance at the top of
Tagle 3 were used to compute the estimates of reliabilities given at the bottom of
Table 3.

Table 3
Cohort 1932A
Fit, Components of Variance, and Reliability
for the Three Models
Models
Conventional Handicap RRT
Fit: R 49 .82 .85
Variance
Stringency .00 .49 45
Ability 2 .24 A7 27
Total (R<) .24 .66 72
Reliability
1 Rater
Observed .24 A7 .27
Adjusted [.24] .33 .50
Mean of 5.38 Raters
Observed .63 .52 .67
Adjusted [.63] 73 .84

in this context where there are relativeiy few raters per subject (Nr/s = 5.38)
and few subjects per rater (Ns/r = 3.07) neither the Conventional model nor the
Handicap model can be expected to perform very well (i.e., give highly reliable
results). The Conventional model relies on passive balancing of the rater effect;
the Handicap model needs a higher Ns/r to get good estimates of the rater
stringency. By default, RRT becomes the "gold standard" for the interpretation of
these results because it is least sensitive to small n (and the kind of problem with
large sampling errors caused by small n for the other models). (An empirical
rather than logical defense of RRT as the "gold standard" would require
something like showing its adjusted scores had greater predictive validity than
those from either of the other models.) Therefore, while the estimate of reliability
using all the data for each mode! (i.e., Nr/s) reported in Table 3 indicates that
reliability improves from Conventional to Handicap to RRT; Handicap may not be
an- improvement over Conventional.  As is expected from the moderate
correlation (r = .55; p< .001) between the rater handicaps used in the Handicap
model and their analogs from the RRT model, Table 4 shows only a moderate
correlation between the adjusted scores of subjects for these two models. The
HandicaF model’s adjusted scores are more strongly correlated with the least
powerful (Conventional) model’s scores, rather than with the most powerful (RRT)
model's. This is consistent with the Handicap model's expected relative inability
to properly apportion the variance to stringency and ability when Ns/r is small. As

14
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Ns/r increases, the correlation between the adjusted scores of the Handicap and
RRT models should rise. In the case of very low numbers of students per rater,
RRT is best, the.Conventional model a distant second, and the Handicap model is

not useful.
Table 4
Cohort 1882A
Correlations among Performance Measures from the Three Models

Models

Conventional Handicap RRT

(Observed) (Adjusted) (Adjusted)
Handicap .86 1.00 .60
RRT .65 .60 1.00

N =24; for allrs p<.001.
Applization of the Models to a Large Data Set

The results reported in Tables § through 7 are from application of the three
models to all the 1982 academic year data that satisfy minimum requirements for
both the Handicap and RRT models. Compared to the results obiained with the
small data set, Table 5§ indicates the means are again quite similar and, as
expected, the variabilities have converged to near the same value with those from
RRT being highest and those from Handicap lowest. Alsg, RRT and Handicap fit
the observed data about equally well ever-all (R and R< in Table 6), with RRT
slightly better. A signiﬁcant rater stringency effect was again found by both
models (F = 2.84: df = 164, 488; p< .0001). Handicap does a better job
apportioning the variance between rater stringency and subject ability, but again
somewhat over-estimates the rater component and underestimates the subject
component. This leads to the pattern of single and multiple-rater reliabilities
shown at the bottom of Table 6: RRT-adjusted best, Handicap-adjusted a close
second and Conventional a not too distant third. The larger number of subjects
helps both the Conventional and Handicap models do a better job, thus their
values are converging on those of the RRT model. (In contrasting the reliability
results of the large and small data sets, keep in mind the average number of
raters per subject is higher in the smaller set, thus the single-rater reliabilities are
more directly comparable between data sets than are the multiple-rater
reliabilities.) A much higher correlation between rater har.dicaps used by the
Handicap model and their analog from RRT (.85 here, rather than .55 in the
smaller data set), is another indicator that Handicap and RRT models are
converging. This pattern continues in Table 7: the measures of performance
given by the models are more highly inter-correlated in the larger set than in the
smaller. That is, the models’ measures of performance are converging.
Nevertheless, RRT remains the gold standard. ~Since the Handicap model’s
measures of performance are now more highly correlated with the gold standard
(RRT) than with the Conventional model (which continues to have the lowest
correlation with RRT), this illustrates that improved measures can be had through
the Handicap model, if the requirements shown in Table 1 are met.
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Table 5
Academic Year 1982
Descriptive Statistics on Performance Measuras from the Three Models
Models
Conventional Handicap RRT
(Observed) (Adjusted) (Adjusted)
Mean 65.71 65.71 66.28
Minimum-Maximum 33.57-92.86 37.24-93.04 41.14-98.57
Standard Deviation 9.46 7.80 9.96

Nraters = 93; Nsubjects = 163; Nratings = 744

Table 6
Academic Year 1982
Fit, Components of Variance, and Reliability
for the Three Mcdels
Models
Conventional Handicap RRT
Fit: R .65 .80 .80
Variance
Stringency .00 32 .26
Ability 5 43 32 .38
Total (R<) 43 .64 .65
Reliability
1 Rater
Observed 43 32 .38
Adjusted [.43] 47 52
Mean of 4.56 Raters
Observed J7 .68 74
Adjusted [.77] .80 .83
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Table 7
Academic Year 1982
Corre.ations Among Performance Measures from the Three Models
Models

Conventional Handicap RRT

(Observed) (Adjusted) (Adjusted)
Handicap .89 1.00 .83
RRT .87 .93 1.00

N = 163; for all rs p<.001.
Model Choice and Pass/Fail Frequencies

it might be tempting to conclude that since the models produce moderately
highly ( .87 < r < .93 ) correlated measures with about the same means, one is
as a good as another. But the three models produce different outcomes for
specific individuals and the best decisions will be obtained with the RRT mcdel.
Table 8 illustrates the impact of model choice on pass/fail outcomes for the
Medicine clerkship students in the 1982 academic year if the minimum passing
score had been defined as a rating of 50% éi.e., labeled on the rating inventorv:
"adequate performance without significant deficits”). (This passing cut-off was
chosen simply for illustrative purpeses. We have no information on whether it is
higher, the same, or lower than that actually used. Minor changes in the cut point
can, depending on the distribution of scores, produce dramatic differences in the
results.) Not only are the total number who fail different depending on the model
used: Conventional (8), Handicap (4), RRT (7), but exactly who fails and who
passes varies depending on the model. Since the RRT model provides the best
measure of performance, the lower right hand cell of Table 8 shows that the
~ secnnd best measure (Handicap-adjusted) would have led to probably unjustified
passes for three students. The Conventional model would pass 3 who probably
should have been failed, and fail 4 who probably should have passed (upper right
hand cell of Table 8).

Table 8
Academic Year 1982
Transitions in Pass/Fail

Decision Based on

Decision Based on Handicap Model RRT Model
Cciwentional Model

Pass Fail Pass Fail

Pass 160 1 159 3

Fail - T 5 3 4 4

Handicap Model
Pass 159 3
Fail o 4
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Wwillie’s Fate

As shown in Table 9, Student Will E Makit’s fate, had he been in this class,
would have depended upon the model, the passing score adopted, and what the
"luck of the draw" gave him as raters. Had Willie’s observed ratings come from a
group of easy raters (a group whose mean RRT true stringency was 1 standard
deviation below the mean across all raters), the Handicap and RRT models would
fail him, although RRT by just one point. The numbers recorded on Willie’s rating
sheet by easy raters over-state his competence relative to what other raters would
have assigned for the performance. Had Willie’s moderately low ratings been
given by a group of stringent raters (mean RRT true stringency +1 SD above the
over-all rater mean), the observed ratings would have understated his true ability.
If his raters had been of middling stringency, he passes under all models. If the
passing score had been set as high as 60%, and his low observed ratings had
come from stringent raters, nis only chance for fair treatment would have been
under one of the models that actively adjusts for rater stringency.

Table 9
Willie’s Fate in the Course
P = Pass; F = Fail

if raters had been Then Willie would
Conventional Handicap RRT
Easy P (50.4) F (43.3) F (49.0)
Middling P (50.4) P (50.4) P (51.9)
Hard P (50.4) P (60.5) P (60.3)

Assuming Two Factors Underlie Clinical Ratings

In general, the pattern of results across models within each performance
domain (i.e., Cognitive and Affective) are parallel to each other, and to the results
based on assuming a single underlying global factor (presented above) with
respect to fit, components of variance, and reliabilities. Therefore, the results for
the two-factor case will not be presented or discussed in the same detail. Table
10 shows that within domain, all models give about the same mean for Cognitive
(69 to 70) and for Aifective (65) performance. Thus, regardless of model these
students were judged to be slightly better in their Cognitive performance. As with
the global measure (i.e., single factor assumption), RRT produced the largest and
Handicap the smallest variability in each domain. Table 11 reveals the same
general pattern of fit, distribution of variance, and consequent relationships
among reliability estimates as was seen in the global measure. Within domain,
RRT fits best and gives the highest estimated reliability. However, all models fit
the Affective domain slightly better than they did the Cognitive domain. This is
contrary to what might be expected since the measure of Cognitive performance
was based on the mean of 4 inventory items, while for Affective performance only
a single item was used. The mean of 4 items might be expected to contain less
random error than the rating of a single item. This expectation is not supported.

il 18
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Table 10
Academic Year 1982
Descriptive Statistics for Two Domains from the Three Models
Models
Conventional Handicap RRT
(Observed) (Adjusted) (Adjusted)
Cognitive-Technical Performance
Mean 68.75 69.08 70.46
Minimum-Maximum 35.72-90.48  41.51-92.36 44.60-98.42
Standard Deviation 9.02 7.37 11.00
Affective-Interpersonal Performance
Mean 64.95 64.87 65.43
Minimum-Maximum 32.15-9345  36.18-93.21 38.82-98.62
Standard Deviation 9.87 8.21 10.39
Table 11

Fit, Components of Variance, and Reliability
Cognitive-Technical and Affective-Interpersonal Performance

Cognitive-Technical ~ Affective-Interpersonal

Conv Hcap RRT Conv Hcap RRT
Fit: R 55 77 .77 66 .80 .80
Variance
Stringency 00 35 .34 00 30 .25
Ability 5 30 .25 .25 44 34 40
Total (R<) 30 .60 .59 44 B4 65
Reliability
1 Rater
Observed 30 25 .25 44 34 40
Adjusted [30] .38 .38 [44] .49 53
Mean of 4.56 Ratérs
Observed 66 61 .61 78 .70 .75
Adjusted [66] .74 .74 [78] .81 .84
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Also consistent with the npattern for the global measure, Table 12 shows a
pattern of correlations of performance measures in which the adjusted measures
(Handicap and RRT) are more highly correlated with each other than with the less

powerful Conventional model for the Affective domain. However, for reasons not

immediately apparent, the pattern vias not sustained in the Cognitive domain.

Table 12
Correlations Among Performance Measures from the Three Models
Models
Conventional Handicap RRT
(Observed) (Adjusted) (Adjusted)
Cognitive-Technical Performance
Handicap .89 1.00 87
RRT .80 87 1.00
Affective-Interpersonal Performance
Handicap 90 1.00 93
RRT .88 93 1.00

N = 163; for all rs p<.001.
Model Choice and Pass/Faii Frequencies

The differences in the mean performance scores for each domair: (shown in
Table 10) imply that passing frequencies might not be equal, regardless of model,
in both domains. However, differences in the means provide a chancy guide to
what will occur in the extreme tails of the distribution of scores. Continuing to
assume that a minimum passing score is 50%, Table 13 gives the over-all pass
and fail frequencies that would have been observed in the two domains during the
1982 academic year. As discussed above, the particular students that pass or fail
depend on the model, the pass criterion, the. domain, and, in addition, how the
information from the two domains is combined. Low reliabilites and high
intercorrelations arriong sub-scale scores in most settings render them useless as
independent bases for evaluation. While not as high as might be desired for
individual assessment (reliability >.95), the reliability for the RRT measures of
each domain are probably minimumly acceptable for assigning "grades" in a
single clinical course. However, are they measuring sufficiently different aspects
of performance to be treated as independent summary assessment categories?
The pattern of correlations in Table 14, suggests that they are not. Under the
Conventional model, the stipulative measures of the two domains have a very
nearly perfect correlation. Although this drops to the relatively moderate value of
.63 when rater stringency error is removed by the RRT model, this is still too high
to unequivocally show that separate factors have indeed been measured. This
suggests two things. As been the case in other studies (Forsythe, McGaghie, &
Friedman, 1986), the method for defining the factors here was not sufficiently
powerful. However, if RRT were combined with factor analysis, the removal of the
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stringency error might very well allow the factor analysis to find a stronger factor
structure than has been thus far possible.

Table 13
Pass/Fail Frequencies by Domain and Model
Model
Conventional Handicap RRT
CT Al CT A CT Al
Pass 156 155 169 159 160 155
Fail 7 8 4 4 3 8

CT = Cognitive-Technical Performance
Al = Affective-Interpersonal Performance

Table 14
Intercorrelations among Measures in the Two Performance Domains
from the Conventional and RRT Models

Model
Conventional RRT
. CT Al CT Al
Conventional:
CT 1.00 .99 .63 .87
- Al 1.00 .62 .88
RRT:
CT 1.00 .63
Al . 1.00

CT = Cognitive-Technical Performance
Al = Affective-Interpersonal Performance

Willie's Fate

Even though it is doubtful that good measures of the two domains were
obtained, for illustrative purposes Student Will E. Makit's case will be treated as if
we had. Willie's fate on both factors is depicted in Table 15. The raters are the
seme as those used in the global example. That is, they are lenient (easy
graders), middling, or stringent (hard graders) in over-all terms. A particular
individual rater might be equally or differentially demanding in the two domains. If
raters were chosen to_be easy or hard within each domain, then the example
would simply mirror the results for Willie on the global measure within each
s%eciﬁcd)domain (with some differences in the exact values of the ratings
obtained).
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Table 15
Willie’s Fate
Pass = 50% in each Domain
If raters had been Then Willie would
Corwventionai Handicap RRT
cT Al CT Al CT Al
Easy F(49) P(63 F(42; P254 FSSQ; F$49;
Mid r 49; P63 F§49 P(63 F(48) P(64
Hard F(49) P(63 P(59) P(74 P(58) P{75)

The thing to note about Willie's fate is the impact of the RRT model versus the
Conventional mcdel, and the over-ail stringency of the raters who gave him the
observed scores. The Conventional model assumes all the students had equally
stringent raters (or that the differences balanced out) so Willie fails the Cognitive
domain and passes the Affective regardiess of the true stringency of his raters. In
the RRT measures, the outcome is the same as the Conventional model only in
the "middling" case; i.e., where the Conventional model’s assumption is correct. If
his raters were easy, his observed ratings over-stated Willie’s accomplishments in
both domains. In fact in this example, they were most over-stated in the Affective
domain. Willie's RRT-adjusted Affective score was 14 points below his observed
score; his Cognitive score falls only 10 points. As a result he fails on both
domains. Had Willie’s observed ratings come from a group that over-all was
hard, using RRT-adjusted scores he would have clearly passed both domains.
The Handicap model produces cut-comes between the others: like Conventional
for easy raters, like RRT for hard raters.

If separate passing scores are required to pass the clerkship, some interesting
questions are raised. Is education relevant to each domain given? Most
clerkships are oriented more toward teaching the Cognitive domain. In this case,
it makes sense to have Willie repeat the clerkship if his failure was Cognitive. But
what if it were both domains, or only Affective? Is it more a matter that the course
gives the student an opportunity to ciscover what works, to teach himself as it
were, rather than be taught? If so, it might reasonably be required that Willie
repeat the experience until he ﬁ?ures out how to perform up to standards in both
domains, gives up or runs out of opportunities.

Conclusions and Recommendations

Even in those cases where effective consensus building procedures can be
used with raters, there is likely to remain some systematic rater er-or. Each of the
three models discussed above can, if properly employed, redine this residual
error. However, each model has its ewn requirements and costs. In general,
there is a need to collect and analyze performance rating data in a manner that
shows the extent to which systematic rater error is present. Without such
information, it is no more than a gues:s what is needed in a specific case. Absent
this specific information, Table 16 provides general guidance based on
circumstances that are fairly typical where consensus building procedures are
absent or unsuccessful. The values in Table 16 for the number of raters per
student for each model to achieve a certain reliability assume that the model's
requirements (Table 1) are met and the components of variance for rater
stringenc, and subject ability are .30 and .40, respeciively. Given these
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assumptions, the Conventional model requires about 3 times as many
independent raters per student to achieve the same level of measurement
accuracy. The rightmost column in Table 16 shows the percentage of reversals in
rank that would be expected for a pair of individuals initially at the 75th and 50th
percentile, upon re-examination. This does not mean their percentile rankings
would reverse, but simply that on second evaluation, the student you thought was
in the top quarter would obtain a score below the student you thought was in the
3rd quarter of the group evaluated. How troublesome errors of this magnitude
are will suggest the level of reliability you need. How much it costs will probably
cecide what you have to accept.

Table 16
Percent of Reversals of Rank on Reassessment
for Students at the 75th and 50th Percentile

Number of Raters/Student Needed Percent
Conventional Handicap RRT Reliability Reversals

5.44 1.75+ 1.75 .70 27.10

9.33 3.02+ 3.02 .80 .18.70

21.00 6.79+ 6.79 90 8.70

44,33 14.33+ 74.33 95 2.20

114.33 36.96+ 36.96 98 0.05

Assumes rater variance = .30; subject variance = .40.
Adapted, in part, from Thorndike and Hagen (1977).

Cost of additional raters, or rater training are likely to be far greater than those
of using the Handicap or RRT models. Since the RRT model is most powerful, it
would seem reasonable to begin by applying it. If the data structure does not
meet RRT’s requirernents, use the Handicap model. If the structure doesn’t meet
either; then change it, such that it does. If that can’t be done, its more raters or
rater training. And if raters can’t be assigned randomly, rater training or some
other consensus building procedure is the only avenue left.
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Appendix A
Formula 1: Standard Error of the Mean

SEmean = SDy / SAt(Nyaters per subject )

where:
SD,, = standard deviation of the measure (x).
Sqryt(n) = square root of n

Formula 2: Spearman-Brown Expansion Formula

kk = (K*r) / {1+ [(k-1)*r1}

where:

rkk = reliability of mean of k independent ratings,

Iyy = reliabiiity of k = 1 independent rating
(equivalent to the inter-rater correlation),

k = Nr = number of independent ratings per subject.

Formula 3: Computing the components of variance

— *

where:
vy = proportion of variance attributable to a,
ray = correlation between variable a
and criterion y, and
b, = standerdize regression weight (tieta) of
variabie a.

Formula 4: Intra-class correlation

fic =Va/ (Vg + Ve)

where: .
e = intra-class correlation,
ic A
V5 = variance due to effect a, and
Ve = variance-due to ertor,

In the Handicap and RRT models, v, = rater variance anéi residual error (1-R2)
for observed means; however,vg = only residual error (1-R<) for the adjusted
score.




